If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2-1n-90=0
a = 1; b = -1; c = -90;
Δ = b2-4ac
Δ = -12-4·1·(-90)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-19}{2*1}=\frac{-18}{2} =-9 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+19}{2*1}=\frac{20}{2} =10 $
| x^2-49x-62=0 | | y-2y=19 | | X^2=96-10x | | 19=y-2y | | 3a+12=4a+12-a | | 9z-8z=6 | | 5.4+.2x=x | | (2y^2-128)/(y^2)=0 | | x^2+3x^2=19^2 | | (4)/(m+2)-(11)/(9)=(1)/(3m+6) | | -w+4w=-3 | | -8j-11=27 | | 1/3r-5= | | -6a-4=3a+5 | | (x/2)+1/3=12/7 | | -6(6n-8)=-96 | | 9x=49=2x | | (n+1)(n-2)=88 | | 6(3+6x)+7x=-326 | | -8-2(1+5x)=20 | | 3x=56-5 | | 2.5^2x=50 | | 0.32m+30=0.4m+24 | | 42=2(I+w) | | 9w+w=10 | | 3/4x=56 | | 1.5(y-6)=3.8-y | | 2300*a=144.60 | | 2(x-5)=9x+31 | | 2x+8=-3/4 | | 17=13+v | | 4(2x–5)–3(x–5)=0 |